Abstract
Hyper-crosslinked polymers are attracting extensive attention owing to their ease of design and synthesis. Based on the flexibility of its molecular design, a hyper-crosslinked polymer with a π-conjugated structure and its derived carbon were synthesized by the Friedel–Crafts reaction. The polymer and its derived hard carbon material were characterized by FTIR, 13C NMR, Raman, BET, and other characterization tools. The electrochemical properties of both materials as anode electrodes of lithium-ion batteries were investigated. Benefiting from the highly cross-linked skeleton and conjugated structure, the as-prepared carbon materials still had high specific surface area (583 m2 g−1) and porosity (0.378 cm3 g−1) values. The hard carbon (CHCPB) anode possessed the powerful reversible capacity of 699 mAh g−1 at 0.1A g−1, and it had an excellent rate of performance of 165 mAh g−1 at the large current density of 5.0 A g−1. Long-cycle performance for 2000 charge/discharge cycles displayed that the capacity was kept at 148 mAh g−1 under 2 A g−1. This work contributes to a better understanding of the properties of hard carbon materials derived from hyper-crosslinked polymers and how this class of materials can be further exploited in various applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.