Abstract

UiO-66 metal-organic frameworks (MOFs) are unstable in some harsh aqueous environments, which limit their practical applications. We demonstrate a postsynthetic modification methodology to transform hydrophilic Zr(Hf)-UiO-66 into superhydrophobic Zr(Hf)-UiO-66-SH-y (SH = thiol, y = fluoroalkyl) by introducing long fluoroalkyl chains into organic linkers through a thiol-ene click reaction. Water contact angles of the four modified UiO-66 MOFs are all larger than 150°. The grafted low-surface-energy fluorine-containing groups become an effective protective shield for the MOFs, making them exhibit remarkable stability in extreme conditions such as alkaline (pH = 12), saturated HCl, and high concentration of NaCl solution (20 wt %). The Zr-UiO-66 MOFs grafted with 1H,1H,2H-perfluoro-1-hexene have high CO2 adsorption contents of 1.54 and 2.88 mmol·g-1 at 298 and 273 K, respectively. Moreover, the superhydrophobic MOFs also showed potential application in oil/water separation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.