Abstract

This paper studies a practical domain adaptive (DA) semantic segmentation problem where only pseudo-labeled target data is accessible through a black-box model. Due to the domain gap and label shift between two domains, pseudo-labeled target data contains mixed closed-set and open-set label noises. In this paper, we propose a simplex noise transition matrix (SimT) to model the mixed noise distributions in DA semantic segmentation, and leverage SimT to handle open-set label noise and enable novel target recognition. When handling open-set noises, we formulate the problem as estimation of SimT. By exploiting computational geometry analysis and properties of segmentation, we design four complementary regularizers, i.e., volume regularization, anchor guidance, convex guarantee, and semantic constraint, to approximate the true SimT. Specifically, volume regularization minimizes the volume of simplex formed by rows of the non-square SimT, ensuring outputs of model to fit into the ground truth label distribution. To compensate for the lack of open-set knowledge, anchor guidance, convex guarantee, and semantic constraint are devised to enable the modeling of open-set noise distribution. The estimated SimT is utilized to correct noise issues in pseudo labels and promote the generalization ability of segmentation model on target domain data. In the task of novel target recognition, we first propose closed-to-open label correction (C2OLC) to explicitly derive the supervision signal for open-set classes by exploiting the estimated SimT, and then advance a semantic relation (SR) loss that harnesses the inter-class relation to facilitate the open-set class sample recognition in target domain. Extensive experimental results demonstrate that the proposed SimT can be flexibly plugged into existing DA methods to boost both closed-set and open-set class performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.