Abstract

The effects of anisotropic transverse collective flow on the Hanbury-Brown--Twiss (HBT) correlation function is studied. There exist three different physics contributions related to flow which affect the correlation function: anisotropic source shape, anisotropic space-momentum correlations in pion emission, and the effects related to the HBT measurement of the size of a moving source in different reference frames. Resolution of these contributions experimentally can lead to a detailed understanding of both collective flow in nucleus-nucleus collisions and the HBT technique itself. A method is presented which permits the derivation of model independent relations between the radius of a source measured in a frame in which it is moving and in its rest frame. \textcopyright{} 1996 The American Physical Society.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.