Abstract
Selfdual variational calculus is developed further and used to address questions of existence of local and global solutions for various parabolic semi-linear equations, and Hamiltonian systems of PDEs. This allows for the resolution of such equations under general time boundary conditions which include the more traditional ones such as initial value problems, periodic and anti-periodic orbits, but also yield new ones such as “periodic orbits up to an isometry” for evolution equations that may not have periodic solutions. In the process, we introduce a method for perturbing selfdual functionals in order to induce coercivity and compactness, without destroying the selfdual character of the system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Calculus of Variations and Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.