Abstract

At sufficiently high temperature and density, quantum chromodynamics (QCD) is expected to undergo a phase transition from the confined phase to the quark-gluon plasma phase. In the Lagrangian lattice formulation the Monte Carlo method works well for QCD at finite temperature, however, it breaks down at finite chemical potential. We develop a Hamiltonian approach to lattice QCD at finite chemical potential and solve it in the case of free quarks and in the strong coupling limit. At zero temperature, we calculate the vacuum energy, chiral condensate, quark number density and its susceptibility, as well as mass of the pseudoscalar, vector mesons and nucleon. We find that the chiral phase transition is of first order, and the critical chemical potential is $\mu_C =m_{dyn}^{(0)}$ (dynamical quark mass at $\mu=0$). This is consistent with $\mu_C \approx M_N^{(0)}/3$ (where $M_N^{(0)}$ is the nucleon mass at $\mu=0$).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.