Abstract
A Hamiltonian guiding center drift orbit formalism is developed which permits the efficient calculation of particle trajectories in magnetic field configurations of arbitrary cross section with arbitrary plasma β. The magnetic field is assumed to be a small perturbation from a zero-order ‘‘equilibrium’’ field possessing magnetic surfaces. The equilibrium field, possessing helical or toroidal symmetry, can be modeled analytically or obtained numerically from equilibrium codes. The formalism is used to study trapped particle precession. Finite banana width corrections to the toroidal precession rate are derived, and the bounce averaged trapped particle motion is expressed in Hamiltonian form. Particle drift-pumping associated with the ‘‘fishbone’’ oscillation is investigated. A numerical code based on the formalism is used to study particle orbits in circular and bean-shaped tokamak configurations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.