Abstract

In a recent paper, we showed that every sufficiently large regular digraph G on n vertices whose degree is linear in n and which is a robust outexpander has a decomposition into edge-disjoint Hamilton cycles. The main consequence of this theorem is that every regular tournament on n vertices can be decomposed into (n−1)/2 edge-disjoint Hamilton cycles, whenever n is sufficiently large. This verified a conjecture of Kelly from 1968. In this paper, we derive a number of further consequences of our result on robust outexpanders, the main ones are the following:(i)an undirected analogue of our result on robust outexpanders;(ii)best possible bounds on the size of an optimal packing of edge-disjoint Hamilton cycles in a graph of minimum degree δ for a large range of values for δ.(iii)a similar result for digraphs of given minimum semidegree;(iv)an approximate version of a conjecture of Nash-Williams on Hamilton decompositions of dense regular graphs;(v)a verification of the ‘very dense’ case of a conjecture of Frieze and Krivelevich on packing edge-disjoint Hamilton cycles in random graphs;(vi)a proof of a conjecture of Erdős on the size of an optimal packing of edge-disjoint Hamilton cycles in a random tournament.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.