Abstract

Halogenation is one of the most important ways to tailor the properties of graphene. We demonstrate for the first time that boron and nitrogen doping can effectively tune the interactions between halogen diatomic molecules and graphene from first principles calculations. Boron and nitrogen doping disrupt the regular pi-electron pattern and create spin density and orbital polarization. More interesting, nitrogen and boron doping not only significantly increases the binding energies of Cl2, Br2, and I2 but also induces the spontaneous dissociation of F2. The tunable effects from nitrogen and boron doping can adjust the interactions in a wide range. Overall, it is suggested that doping can be a very promising method for the facile halogenation of graphene.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.