Abstract
For the first time, we have reported a halo (ring) formation occurred in the cross-section of integrally skinned asymmetric membranes. These membranes were wet-spun from solutions containing 30 and 33 wt % of 95/5 and 90/10 polyetherimide (PEI)/polybenzimidazole (PBI). Both Imaging X-ray Photoelectron Spectroscopy (XPS) and Dynamic Mechanical Analyzer's (DMA) data suggest PEI and PBI form miscible blends the “halo” is not chemically different from the matrix and is most likely a physical phenomenon of unique pore morphology. In other words, uniform porosity was created in the middle of hollow fiber cross-section area, which performs as a filter for light transmission. We found that the addition of PBI in PEI/DMAc solution not only depresses the macrovoid formation, but also changes the precipitation path: nucleation growth vs. spinodal decomposition. The formation of a halo within a membrane is possibly due to the fact that a uniform nucleation growth occurs in the ring region during the early stage of phase separation because of high solution viscosity and diffusion controlled solvent-exchange process, and then separation grows in the mechanism of spinodal decomposition from small amplitude composition fluctuations. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1575–1585, 1999
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Polymer Science Part B: Polymer Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.