Abstract
Learning-based super-resolution has recently been proposed for enhancing human face images, known as “face hallucination”. In this paper, we propose a novel algorithm to super-resolve face images given multiple partially occluded inputs at different lower resolutions. By integrating hierarchical patch-wise alignment and inter-frame constraints into a Bayesian framework, we can probabilistically align multiple input images at different resolutions and recursively infer the high-resolution face image. We address the problem of fusing partial imagery information through multiple frames and discuss the new algorithm’s effectiveness when encountering occluded low-resolution face images. We show promising results compared to those of existing face hallucination methods from both simulated facial database and live video sequences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.