Abstract

An exact solution of an oscillatory flow is constructed in a rotating fluid under the influence of an uniform transverse magnetic field. The fluid is considered as second-grade (non-Newtonian). The influence of Hall currents and material parameters of the second-grade fluid is investigated. The hydromagnetic flow is generated in the uniformly rotating fluid bounded between two rigid non-conducting parallel plates by small amplitude oscillations of the upper plate. The exact solutions of the steady and unsteady velocity fields are constructed. It is found that the steady solution depends on the Hall parameter but is independent of the material parameter of the fluid. The unsteady part of the solution depends upon both (Hall and material) parameters. Attention is focused upon the physical nature of the solution, and the structure of the various kinds of boundary layers is examined. Several results of physical interest have been deduced in limiting cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.