Abstract

An accurate model for junction field-effect transistors (JFETs) and for Schottky barrier field-effect transistors (MESFETs) with micron and submicron dimensions is presented. The following effects are modeled: distributed channel charge, electrostatic drain feedback, drift velocity saturation, channel length modulation, substrate bias effect, subthreshold region effect, short-length and narrow-width effects, drain-source punch-through, variable capacitance effects, and temperature effects. It is primarily physical rather than empirical and only one set of parameters is needed to simulate devices of a particular technology. The model is intended for silicon devices, but the extension to devices in semiconducting III–V compounds and with insulating substrates is straightforward. The model is compared to experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.