Abstract

Halide perovskite nanomaterials are widely used in optoelectronics and photonics due to their outstanding luminescent properties, whereas their strong multiphoton absorption makes them prospective for bioimaging. Nonetheless, instability of perovskites in aqueous solutions is an important limitation that prevents their application in biology and medicine. Here, we demonstrate fluorescence and upconversion imaging in living cells by employing CsPbBr3 nanocrystals (NCs) that show an improved water-resistance (at least for 24 h) after their coating as individual particles with various silica-based shells. The obtained phTEOS-TMOS@CsPbBr3 NCs possess high quality, which we confirm with high-resolution transmission and scanning transmission electron microscopy, X-ray diffraction analysis, Fourier-transform infrared and energy-dispersive X-ray spectroscopies, as well as with fluorescence optical microscopy. The developed platform can make the halide perovskite NCs suitable for various bioimaging applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.