Abstract

We propose and investigate the properties of a digital ferromagnetic heterostructure consisting of a delta-doped layer of Mn in Si, using ab initio electronic-structure methods. We find that (i) ferromagnetic order of the Mn layer is energetically favorable relative to antiferromagnetic, and (ii) the heterostructure is a two-dimensional half-metallic system. The metallic behavior is contributed by three majority-spin bands originating from hybridized Mn-d and nearest-neighbor Si-p states, and the corresponding carriers are responsible for the ferromagnetic order in the Mn layer. The minority-spin channel has a calculated semiconducting gap of 0.25 eV. The band lineup is found to be favorable for retaining the half-metal character to near the Curie temperature. This kind of heterostructure may be of special interest for integration into mature Si technologies for spintronic applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.