Abstract

The tumour microenvironment (TME) is a specialised niche involving intercellular communication among cancer cells and various host cells. Among the host cells, the quantity and quality of immune cells within the TME play essential roles in cancer development and management. The immunologically suppressive, so-called 'cold' TME established by a series of tumour-host interactions, including generating immunosuppressive cytokines and recruiting regulatory host immune cells, is associated with resistance to therapies and worse clinical outcomes. Various therapeutic approaches have been used to target the cold TME, including immune checkpoint blockade therapy and adoptive T-cell transfer. A promising, less explored therapeutic strategy involves targeting TME-associated exosomes. Exosomes are nanometer-sized, extracellular vesicles that transfer material from donor to recipient cells. These particles can reprogram the recipient cells and modulate the TME. In particular, exosomes from haematopoietic cells are known to promote or suppress cancer progression under specific conditions. Understanding the effects of haematopoietic cell-secreted exosomes may foster the development of therapeutic exosomes (tExos) for personalised cancer treatment. However, the development of exosome-based therapies has unique challenges, including scalable production, purification, storage and delivery of exosomes and controlling batch variations. Clinical trials are being conducted to verify the safety, feasibility, availability and efficacy of tExos. This review summarises our understanding of how haematopoietic cell-secreted exosomes regulate the TME and antitumour immunity and highlights present challenges and solutions for haematopoietic cell-derived exosome-based therapies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.