Abstract

The MIT bag model for hadrons is treated in the static cavity approximation. The adiabatic deformation of a six-quark hadron with quantum numbers of the deuteron is studied in a configuration which permits the separation of two triplets with quantum numbers of the neutron and proton. The energy of the system is computed to second order in the gluon coupling and presented as a function of two choices of a single collective variable: a separation parameter for the nucleons and the baryonic quadrupole moment. The present study considers only interactions at short and intermediate range in a state with nuclear spins aligned in parallel along the deformation axis. It does not treat effects depending on nucleon momenta. The energy, when expressed in terms of a nuclear separation parameter, exhibits a soft repulsive core at short range due to a color-magnetic gluon interaction, and strong attraction in intermediate range due to a color-electric interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.