Abstract

The influence of a two-hadron threshold is studied for the hadron mass scaling with respect to some quantum chromodynamics parameters. A quantum mechanical model is introduced to describe the system with a one-body bare state coupled with a single elastic two-body scattering. The general behavior of the energy of the bound and resonance state near the two-body threshold for a local potential is derived from the expansion of the Jost function around the threshold. It is shown that the same scaling holds for the nonlocal potential induced by the coupling to a bare state. In $p$ or higher partial waves, the scaling law of the stable bound state continues across the threshold describing the real part of the resonance energy. In contrast, the leading contribution of the scaling is forbidden by the nonperturbative dynamics near the $s$-wave threshold. As a consequence, the bound state energy is not continuously connected to the real part of the resonance energy. This universal behavior originates in the vanishing of the field renormalization constant of the zero-energy resonance in the $s$ wave. A proof is given for the vanishing of the field renormalization constant, together with a detailed discussion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.