Abstract

Habitat fragmentation of freshwater ecosystems is increasing rapidly, however the understanding of extinction debt and species decline in riverine habitat fragments lags behind that in other ecosystems. The mighty rivers that drain the Himalaya - the Ganges, Brahmaputra, Indus, Mekong and Yangtze - are amongst the world’s most biodiverse freshwater ecosystems. Many hundreds of dams have been constructed, are under construction, or are planned on these rivers and large hydrological changes and losses of biodiversity have occurred and are expected to continue. This study examines the causes of range decline of the Indus dolphin, which inhabits one of the world’s most modified rivers, to demonstrate how we may expect other vertebrate populations to respond as planned dams and water developments come into operation. The historical range of the Indus dolphin has been fragmented into 17 river sections by diversion dams; dolphin sighting and interview surveys show that river dolphins have been extirpated from ten river sections, they persist in 6, and are of unknown status in one section. Seven potential factors influencing the temporal and spatial pattern of decline were considered in three regression model sets. Low dry-season river discharge, due to water abstraction at irrigation barrages, was the principal factor that explained the dolphin’s range decline, influencing 1) the spatial pattern of persistence, 2) the temporal pattern of subpopulation extirpation, and 3) the speed of extirpation after habitat fragmentation. Dolphins were more likely to persist in the core of the former range because water diversions are concentrated near the range periphery. Habitat fragmentation and degradation of the habitat were inextricably intertwined and in combination caused the catastrophic decline of the Indus dolphin.

Highlights

  • Fresh waters are experiencing declines in biodiversity far greater than those in the most affected terrestrial ecosystems [1,2]

  • Pattern of Range Decline Historical dolphin sightings were obtained for all river sections formerly occupied by dolphins except for the area downstream of Kotri Barrage to the delta (Fig. 1: no. 7) and the stretch from Harike to Hussainiwala barrage (Fig. 1: no. 16) which is close to the India-Pakistan border

  • Model evaluation The river discharge data used in these models were from the last ten years but they explained well the pattern of dolphin decline that occurred decades ago

Read more

Summary

Introduction

Fresh waters are experiencing declines in biodiversity far greater than those in the most affected terrestrial ecosystems [1,2]. Dam construction has dramatically increased habitat fragmentation and degradation in freshwaters, which is likely to have incurred a large unredeemed extinction debt [3]. This debt is not yet well quantified or understood, as metapopulation ecology in freshwaters has lagged behind similar work in other habitats, such as tropical forests [4,5,6]. A fundamental, yet unanswered question for conservation biology is how rapidly freshwater species disappear from river fragments and which factors influence the extinction of freshwater species in habitat patches. The combined effects of these activities are predicted to cause rapid and escalating hydrological change and habitat fragmentation that will negatively impact riverine biodiversity and ecosystem services [9,13]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.