Habitat fidelity in hawksbill sea turtles.
Climate change is altering habitat suitability and driving shifts in species distributions. To understand potential responses by mobile animals, it is essential to assess levels of plasticity in habitat use, ranging from transience to long-term fidelity. Here, we evaluate the fidelity of hawksbill sea turtles (Eretmochelys imbricata) to habitats used while foraging (our primary focus), migrating, and nesting. After satellite tracking 17 adult females from three Western Atlantic nesting areas, we then re-tracked them in a subsequent year. Of 15 turtles with sufficient data to assess interannual foraging area fidelity, 14 returned to the same home range, exhibiting overlap between successive 50% utilization distributions (UDs); the 15th individual shifted <10 km. Mean precision of fidelity, here expressed as the distance between centroids of successive foraging UDs, was 1.45 ± SD 2.3 km-less than the error associated with many satellite fixes. We also observed fidelity to inter-nesting home ranges and migratory pathways, though distinct deviations in migratory routes occurred. A paradigm of precise habitat fidelity is likely appropriate for adult hawksbills, yet merits further investigation across life history stages and global populations. Our results suggest that adult transience may have limited potential to contribute to projected distributional shifts.
16
- 10.1016/j.biocon.2021.109229
- Jul 7, 2021
- Biological Conservation
40
- 10.1007/s00227-011-1870-9
- Jan 11, 2012
- Marine Biology
74
- 10.1111/j.1365-2656.2012.01997.x
- May 21, 2012
- Journal of Animal Ecology
7
- 10.18475/cjos.v52i1.a10
- Jul 4, 2022
- Caribbean Journal of Science
28
- 10.1002/eap.1366
- Sep 23, 2016
- Ecological Applications
60
- 10.1002/fee.2456
- Jan 11, 2022
- Frontiers in Ecology and the Environment
180
- 10.3354/meps242253
- Jan 1, 2002
- Marine Ecology Progress Series
12
- 10.1098/rsif.2021.0859
- May 1, 2022
- Journal of the Royal Society, Interface
23
- 10.1007/s00227-019-3583-4
- Sep 30, 2019
- Marine Biology
2
- 10.1007/s00227-024-04491-6
- Aug 2, 2024
- Marine Biology
- Research Article
62
- 10.1111/jav.01239
- Apr 28, 2017
- Journal of Avian Biology
Outdoor recreation inflicts a wide array of impacts on individual animals, many of them reflected in the avoidance of disturbed areas. The scale and spatial extent, however, at which wildlife populations are affected, are mostly unclear. Particularly in geographically isolated populations, where restricted habitat availability may preclude a relocation to undisturbed areas, effective habitat reduction may remain underestimated or even unnoticed, when animals stay in disturbed areas and only show small‐scale responses. Based on telemetry data, we investigated the spatial and seasonal effects of outdoor recreation – in relation to landscape and vegetation conditions – on western capercaillie Tetrao urogallus , considering two scales, home range and within‐home range habitat selection. We determined the distance‐thresholds up to which recreation infrastructures were avoided and estimated the extent of affected habitat for the isolated Black Forest (southwestern Germany) study population. While outdoor recreation did not affect home range selection, strong effects on habitat use within the home range were detected: distance to recreation infrastructure (hiking and cross‐country skiing trails, ski pistes) was the main determinant of habitat selection in winter; in summer, mountain bike trails and hiker's restaurants were avoided up to an average distance of 145 m (CI: 60–1092 m). Around winter‐infrastructure, relative avoidance was recorded up to 320 m (CI: 36–327 m), it was reduced, however, when dense understory provided visual cover. Of the entire population area, between 8–20% (summer) and 8–40% (winter) were affected by outdoor recreation, mainly in the high altitudes. Even without evident large‐scale shifts in species distribution, local‐scale avoidance of outdoor recreation can substantially contribute to effective habitat reduction. Based on our results we recommend a general reduction in recreation infrastructure density in key habitats, the establishment of undisturbed wildlife refuges with a diameter of at least 800 m, as well as enhancing visual protection by maintaining a strip of dense understory along trails.
- Research Article
20
- 10.1111/j.1474-919x.2010.01086.x
- Nov 24, 2010
- Ibis
Targeting research to underpin climate change adaptation for birds J. W. PEARCE-HIGGINS,* R. B. BRADBURY, D. E. CHAMBERLAIN, A. DREWITT, R. H. W. LANGSTON & S. G. WILLIS BTO, The Nunnery, Thetford, Norfolk IP24 2PU, UK RSPB, The Lodge, Sandy, Bedfordshire SG19 2DL, UK Dipartimento di Biologia Animale e dell’Uomo, Universita di Torino, Via Accademia Albertina 13, 10123 Turin, Italy English Nature, Northminster House, Peterborough PE1 1UA, UK Institute of Ecosystem Science, School of Biological Sciences, University of Durham, South Road, Durham DH1 3LE, UK
- Research Article
276
- 10.1111/cobi.12126
- Aug 5, 2013
- Conservation Biology
Ingestion of marine debris can have lethal and sublethal effects on sea turtles and other wildlife. Although researchers have reported on ingestion of anthropogenic debris by marine turtles and implied incidences of debris ingestion have increased over time, there has not been a global synthesis of the phenomenon since 1985. Thus, we analyzed 37 studies published from 1985 to 2012 that report on data collected from before 1900 through 2011. Specifically, we investigated whether ingestion prevalence has changed over time, what types of debris are most commonly ingested, the geographic distribution of debris ingestion by marine turtles relative to global debris distribution, and which species and life-history stages are most likely to ingest debris. The probability of green (Chelonia mydas) and leatherback turtles (Dermochelys coriacea) ingesting debris increased significantly over time, and plastic was the most commonly ingested debris. Turtles in nearly all regions studied ingest debris, but the probability of ingestion was not related to modeled debris densities. Furthermore, smaller, oceanic-stage turtles were more likely to ingest debris than coastal foragers, whereas carnivorous species were less likely to ingest debris than herbivores or gelatinovores. Our results indicate oceanic leatherback turtles and green turtles are at the greatest risk of both lethal and sublethal effects from ingested marine debris. To reduce this risk, anthropogenic debris must be managed at a global level.Análisis Global de la Ingesta de Residuos Antropogénicos por Tortugas MarinasLa ingesta de residuos marinos puede tener efectos letales y subletales sobre las tortugas marinas y otros animales. Aunque hay investigadores que han reportado la ingesta de residuos antropogénicos por tortugas marinas y la incidencia de la ingesta de residuos ha incrementado con el tiempo, no ha habido una síntesis global del fenómeno desde 1985. Por esto analizamos 37 estudios publicados, desde 1985 hasta 2012, que reportan datos colectados desde antes de 1900 y a lo largo del 2011. Investigamos específicamente si el predominio de la ingesta ha cambiado con el tiempo, qué tipos de residuos se ingieren comúnmente, la distribución geográfica de la ingesta de residuos por tortugas marinas en relación a la distribución global de residuos y cuáles especies y etapas de vida tienen más probabilidad de ingerir residuos. La probabilidad de que las tortugas verdes (Chelonia mydas) y laúd (Dermochelys coriacea) ingieran escombros incrementa significativamente con el tiempo; plástico fue el residuo que más se ingirió. Las tortugas en casi todas las regiones estudiadas ingieren residuos, pero la probabilidad de ingesta no estuvo relacionada con las densidades modeladas de residuos. Además de esto, tortugas más pequeñas, en etapa oceánica de vida, tuvieron una mayor probabilidad de ingerir residuos que las tortugas forrajeras terrestres, mientras que las especies carnívoras tuvieron menos probabilidad de ingerir residuos que las herbívoras o las gelatinívoras. Nuestros resultados indican que las tortugas verdes y laúd tienen el mayor riesgo de efectos letales y subletales de la ingesta de residuos marinos. Para reducir el riesgo, los residuos antropogénicos deben manejarse en un nivel global.
- Dissertation
- 10.4225/28/5ac5863ce1106
- Jan 1, 2017
Flatbacks at sea: understanding ecology in foraging populations
- Research Article
13
- 10.1007/s10584-019-02435-4
- Apr 24, 2019
- Climatic Change
Ongoing changes in climate are expected to alter current species’ habitat and potentially result in shifts in species distributions. While climatic conditions are important to a species’ ability to persist in an area, for many taxa, other environmental factors, such as geology, land cover, and topography, are also important for providing suitable habitat. Furthermore, aquatic species experience changes in climatic conditions through the effect precipitation and air temperature have on streamflow regimes and water temperature. In this study, species distribution models (SDMs) for ten stream-dwelling crayfish species were generated using a maximum entropy approach across the Mobile River Basin in the southeastern United States. SDMs were developed using model-generated contemporary estimates of streamflow and water temperature as well as geologic, topographic, and land cover data. Future distributions were then projected using global climate model (GCM) projections of streamflow and water temperature. Geology, topography, and streamflow appear to be more important predictors of suitable habitat than water temperature for crayfish species within the Mobile River Basin. Species distributions regulated by limited influences from stream flow and water temperature displayed relatively small changes in projected future habitat distributions based on various GCM scenarios. When shifts in species distributions were projected into the future, these shifts did not appear to follow a northward retreat or expansion, likely due to the limited impact of water temperature on the modeled distributions of suitable habitat for these species. Furthermore, species’ habitat distribution responses among future climate scenarios were variable within and among species and did not vary unidirectionally with increased severity of climate change as realized through increased warming patterns.
- Research Article
3
- 10.3390/land13081206
- Aug 5, 2024
- Land
Climate and land use changes drive shifts in species distributions, causing variations in species richness. Yet the influence of shifts in species distributions on functional diversity at broad spatial scales remains uncertain. Here, we explored the potential effect of climate and land use changes on the functional diversity of European amphibian assemblages from the present to 2050, along with their effect on species richness. We performed species distribution modelling using a scenario of climate and land use change to estimate current and future potential distributions of 73 species. We estimated functional diversity using morphological and ecological functional traits. Our results highlight the intricate effects of climate and land use changes on taxonomic and functional diversity of amphibians. A climate-induced northward expansion of amphibians is anticipated, with temperature, precipitation, and forest cover prominently shaping future assemblages. Species expected to have shrinking ranges (n = 35) tend to mature sexually at a later age, produce fewer offspring per reproductive event, and live at higher maximum altitudes compared to species expected to expand (n = 38). Furthermore, trait composition changes are expected to exceed predictions based solely on species richness. These changes will vary geographically, with northern regions likely experiencing substantial increases in functional richness and functional redundancy, i.e., the coexistence of species with similar functional roles. Our findings underscore that functional diversity changes might serve as an early warning signal to assess human impacts on biodiversity.
- Research Article
6
- 10.25260/ea.16.26.2.0.136
- Jul 6, 2016
- Ecología Austral
El cambio climático (CC) es una de las principales amenazas a la biodiversidad. Se han constatado efectos del CC sobre la distribución de las especies, principalmente corrimientos hacia latitudes altas y zonas elevadas. Las especies amenazadas resultan especialmente vulnerables a dichos cambios. En este marco, las áreas protegidas (AP) podrían ser una herramienta clave para la adaptación al cambio climático. Nuestros objetivos son: estudiar los efectos del CC sobre la distribución y riqueza de anfibios amenazados y casi amenazados de Uruguay, y evaluar la eficacia del Sistema Nacional de Áreas Protegidas (SNAP) en el presente y ante escenarios de CC. Para modelar la distribución de nueve especies se obtuvieron registros de colecciones herpetológicas, publicaciones científicas y del GBIF, datos de clima actual y proyecciones del Modelo de Circulación General HadCM3 bajo los escenarios A2 y B2 del IPCC descargadas del Worldclim. La distribución potencial se obtuvo aplicando modelos de máxima entropía (MAXENT). Para evaluar la eficacia del SNAP se realizó un análisis de vacíos, superponiendo la cobertura de las AP con la distribución de las especies. Los modelos indican que la mayoría de las especies expandirá su distribución a futuro en Uruguay, excepto Pleurodema bibroni y Melanophryniscus montevidensis. La riqueza local de anfibios podría aumentar en el noroeste y este del país. Si bien los anfibios estudiados están incluidos al menos en un área del SNAP, la superficie protegida cubre menos de 2% de la distribución de las especies, tanto en la actualidad como bajo los escenarios de CC. Esto indica la baja eficacia del sistema. Si bien el CC esperado para la región no sería una amenaza para los anfibios estudiados, la escasa protección por parte del SNAP representa un riesgo para la conservación de la herpetofauna nativa frente a otros componentes del cambio global.(Bajar Materiales Suplementarios: http://goo.gl/U3krcP)
- Research Article
- 10.1002/ajb2.70081
- Aug 8, 2025
- American Journal of Botany
PremiseClimate change poses challenges to grasslands, including those of the North American Great Plains Region, where shifts in species distributions and fire dynamics are expected. Our present analysis focuses on remaining grasslands within this largely developed and agricultural region. The differential responses of C4 and C3 grass species to future climate conditions, particularly in habitat suitability and flammability, are critical for understanding ecosystem changes.MethodsWe used species distribution models to predict shifts in habitat suitability for 37 grass species under future climate scenarios and assessed flammability traits in a free‐air CO2‐enrichment study, focusing on species' physiological responses to elevated CO2, warming, and drought.ResultsOur models predicted that C4 species will retain higher habitat suitability, while C3 species will decline. Leaf‐level flammability analysis showed that species with higher water‐use efficiency under elevated CO will have lower flammability than under non‐elevated, potentially decreasing the predicted rate of fire spread when such species dominate. In contrast, species with higher growth rates but lower water‐use efficiency may be more flammable. Species‐specific responses varied within functional types. Anticipated shifts in species distributions suggest C4 species will become more dominant, potentially altering competitive dynamics and reducing C3 diversity. Changes in flammability under future conditions are expected to influence fire regimes, with a predicted decrease in mean community rate of spread due to the dominance of less‐flammable C4 species.ConclusionsThese findings highlight the need for adaptive fire management and conservation strategies to maintain biodiversity and ecosystem function in North American grasslands under climate change.
- Research Article
493
- 10.1038/nature12976
- Feb 9, 2014
- Nature
The reorganization of patterns of species diversity driven by anthropogenic climate change, and the consequences for humans, are not yet fully understood or appreciated. Nevertheless, changes in climate conditions are useful for predicting shifts in species distributions at global and local scales. Here we use the velocity of climate change to derive spatial trajectories for climatic niches from 1960 to 2009 (ref. 7) and from 2006 to 2100, and use the properties of these trajectories to infer changes in species distributions. Coastlines act as barriers and locally cooler areas act as attractors for trajectories, creating source and sink areas for local climatic conditions. Climate source areas indicate where locally novel conditions are not connected to areas where similar climates previously occurred, and are thereby inaccessible to climate migrants tracking isotherms: 16% of global surface area for 1960 to 2009, and 34% of ocean for the 'business as usual' climate scenario (representative concentration pathway (RCP) 8.5) representing continued use of fossil fuels without mitigation. Climate sink areas are where climate conditions locally disappear, potentially blocking the movement of climate migrants. Sink areas comprise 1.0% of ocean area and 3.6% of land and are prevalent on coasts and high ground. Using this approach to infer shifts in species distributions gives global and regional maps of the expected direction and rate of shifts of climate migrants, and suggests areas of potential loss of species richness.
- Research Article
34
- 10.2744/ccb-1024.1
- Dec 1, 2013
- Chelonian Conservation and Biology
The hawksbill turtle (Eretmochelys imbricata) is critically endangered throughout its global range and is particularly threatened in the eastern Pacific, a region where our knowledge of the ecological traits is very limited. Understanding habitat preferences of hawksbills at different life stages is necessary to create effective local and regional conservation strategies. We studied habitat use and the diet of juvenile hawksbill sea turtles at Punta Coyote, a rocky reef located along the Nicoya Peninsula on the north Pacific coast of Costa Rica, along the northern boundary of the Caletas–Arío National Wildlife Refuge. We tracked 12 juvenile hawksbills (36–69-cm curved carapace length) with acoustic transmitters to study their habitat use. Turtles were on the rocky reef more frequently than the sandy bottoms (χ21 = 29.90, p = 0.00). The 95% fixed kernel density home range analysis revealed high-intensity use of the rocky reef, where hawksbills mainly dove in shallow waters (7.6 ± 3.3 m). Less than 5% of the 95% home range area overlapped with the Caletas–Arío National Wildlife Refuge. Hawksbills fed mainly on 2 invertebrate species regardless of season: a sponge (Geodia sp.) (mean volume = 67%) and a tunicate (Rhopalaea birkelandi) (mean volume = 51%). Our surveys along the Nicoya Peninsula suggested that use of rocky reefs by juvenile hawksbill turtles was common. To protect juvenile hawksbills in the study area, we recommend that this site be granted official protection status as part of the Caletas–Arío National Wildlife Refuge. We also suggest studying other discrete rocky reefs along the Nicoya Peninsula to determine critical habitats for the hawksbill turtle to improve conservation and management policy.
- Research Article
7
- 10.1016/j.gecco.2022.e02247
- Oct 1, 2022
- Global Ecology and Conservation
The umbrella species concept is a frequently used concept in conservation since the conservation of an umbrella species may benefit other species. Keystone species are often suggested as potential umbrella species, but the validity of this approach remains uncertain. Moreover, climate change can have a multidirectional effect on the distribution of species, in which the distribution of umbrella species can be affected differently than that of beneficiary species. The validity of applying the umbrella species concept in conservation may thus be jeopardised by climate change. This study assessed the potential of two keystone species, the plateau pika ( Ochotona curzoniae ) and the Daurian pika ( Ochotona dauurica ), to be umbrella species for 13 potentially beneficiary species under current and future environmental conditions. Of these 13 species, five currently only co-occur with the plateau pika, five only with the Daurian pika, and three with both pika species. Current and future distributions of the pika species and potentially beneficiary species were predicted using bioclimatic and land-use variables. Range overlaps, Pearson correlations, niche similarity tests and relative suitability tests were performed to assess the umbrella potential of both pika species. Our results show that at present, both pika species may be considered to be umbrella species, benefitting several co-occurring species. However, species that currently co-occur with both pika species will not benefit from conservation of either of the pikas in the future years under climate change scenarios. The plateau pika loses its potential to act as umbrella species for two of the four species which currently may benefit. We can conclude that keystone species like pikas can act as umbrella species for carefully selected potentially beneficiary species under current conditions. Due to climate change related shifts in species distributions, they may however lose their umbrella species status in the future, which should be considered when selecting species conservation strategies. • The umbrella potential of two keystone species was explored under multiple scenarios of climate change. • Predicted umbrella potential of one keystone species was stronger than the other. • Umbrella potential is not necessarily maintained under future scenarios of climate change • Choice of beneficiary species highly influences the umbrella potential of keystone species. • Integration of predicted distribution range shifts in action plans is essential.
- Research Article
55
- 10.1071/mf14155
- Jun 22, 2015
- Marine and Freshwater Research
Physical disturbance through wave action is a major determinant of kelp forest structure. The North-east Atlantic storm season of 2013–14 was unusually severe; the south coast of the UK was subjected to 6 of the 12 most intense storms recorded in the past 5 years. Inshore significant wave heights and periods exceeded 7m and 13s with two storms classified as ‘1-in-30 year’ events. We examined the impacts of the storm season on kelp canopies at three study sites. Monospecific canopies comprising Laminaria hyperborea were unaffected by storm disturbance. However, at one study site a mixed canopy comprising Laminaria ochroleuca, Saccharina latissima and L. hyperborea was significantly altered by the storms, due to decreased abundances of the former two species. Quantification of freshly severed stipes suggested that the ‘warm water’ kelp L. ochroleuca was more susceptible to storm damage than L. hyperborea. Overall, kelp canopies were highly resistant to storm disturbance because of the low vulnerability of L. hyperborea to intense wave action. However, if climate-driven shifts in kelp species distributions result in more mixed canopies, as predicted, then resistance to storm disturbance may be eroded.
- Research Article
70
- 10.1371/journal.pone.0040713
- Jul 12, 2012
- PLoS ONE
Accurately quantifying animals’ spatial utilisation is critical for conservation, but has long remained an elusive goal due to technological impediments. The Argos telemetry system has been extensively used to remotely track marine animals, however location estimates are characterised by substantial spatial error. State-space models (SSM) constitute a robust statistical approach to refine Argos tracking data by accounting for observation errors and stochasticity in animal movement. Despite their wide use in ecology, few studies have thoroughly quantified the error associated with SSM predicted locations and no research has assessed their validity for describing animal movement behaviour. We compared home ranges and migratory pathways of seven hawksbill sea turtles (Eretmochelys imbricata) estimated from (a) highly accurate Fastloc GPS data and (b) locations computed using common Argos data analytical approaches. Argos 68th percentile error was <1 km for LC 1, 2, and 3 while markedly less accurate (>4 km) for LC ≤0. Argos error structure was highly longitudinally skewed and was, for all LC, adequately modelled by a Student’s t distribution. Both habitat use and migration routes were best recreated using SSM locations post-processed by re-adding good Argos positions (LC 1, 2 and 3) and filtering terrestrial points (mean distance to migratory tracks ± SD = 2.2±2.4 km; mean home range overlap and error ratio = 92.2% and 285.6 respectively). This parsimonious and objective statistical procedure however still markedly overestimated true home range sizes, especially for animals exhibiting restricted movements. Post-processing SSM locations nonetheless constitutes the best analytical technique for remotely sensed Argos tracking data and we therefore recommend using this approach to rework historical Argos datasets for better estimation of animal spatial utilisation for research and evidence-based conservation purposes.
- Research Article
1
- 10.1088/2515-7620/adbdaf
- Mar 1, 2025
- Environmental Research Communications
Climate change is expected to exert varying effects on different taxa and species, affecting both their abundance and distribution ranges. Previous studies have used climate niche models (CNMs) to estimate shifts in the distribution of insects, without considering whether the effects of climate change may vary depending on their functional traits (nesting strategy, body size, and period of activity). Dung beetles, a taxonomic group characterized by using mammalian dung as their primary source of food (coprophagy), respond differently to temperature fluctuations depending on their nesting strategy and body size. In this study, we used CNMs to estimate shifts in the distribution ranges of 33 species of dung beetles under climate change scenarios (the shared socioeconomic pathways from the IPCC’s Sixth Assessment Report) for the period 2041–2060 in North America and Central America (excluding Canada due to absence of data). Additionally, we analyzed whether the effects of climate change on the distribution ranges of the studied species are significantly different depending on their functional traits. Our results showed that climate change will negatively affect the distribution range of the majority of the studied species by the middle of this century, with contrasting effects depending on their nesting strategy and body size. The smallest species and dwellers showed an increase in their occurrence probabilities and percentage of highly suitable habitats, whereas larger-bodied species and tunnelers showed a decrease in both. We found no significant differences between diurnal and nocturnal species. Our results show that by incorporating key traits related to temperature response and ecosystem function, we can analyze shifts in species distribution ranges more precisely, enabling the identification of patterns across functional categories and predictions about their future.
- Book Chapter
- 10.5772/23978
- Oct 5, 2011
In wildlife research, telemetry data are often converted to home ranges. The concept of an animal’s home range can be defined as the “. . . area traversed by the individual in its normal activities of food gathering, mating and caring for young” (Burt, 1943, pg. 351). The delineation and analysis of home ranges is common in wildlife research, and several reviews of home range studies exist (Harris et al., 1990; Laver & Kelly, 2008). Site fidelity (Edwards et al., 2009), population abundance (Trewhella et al., 1988), prey-predatory abundance (Village, 1982), impacts of human disturbance (Apps et al., 2004; Berland et al., 2008; Frair et al., 2008; Rushton et al., 2000; Thiel et al., 2008), feeding strategies (Hulbert et al., 1996) and ecological correlates of critical habitat (Tufto, 1996; Fisher, 2000) are examples of topics addressed using home range as the analysis unit. Home ranges are typically delineated with polygons. Locations within the polygon are considered part of the animal’s home range, and locations outside are not. As evidenced by the large number of home range studies, such binary approaches have been useful. However, landscape use by wildlife is spatially heterogeneous (Johnson et al., 1992; Kie et al., 2002). Edges (Yahner, 1988), disturbances (i.e., roads and forest harvesting) (Berland et al., 2008), and patch size (Kie et al., 2002) are just a few landscape features that cause heterogeneity in the geographic distribution of wildlife within home ranges. To account for spatial heterogeneity within a home range, core areas, defined as those used most frequently and likely to contain homesites, along with areas of refuge and dependable food sources (Burt, 1943) are sometimes delineated to create categories of habitat use (e.g., Samuel et al., 1985). Characterizing the spatial variation in wildlife distributions should improve our understanding of habitat use, especially in conjunction with the growing spatial extents of wildlife data sets. Arguably, the two most common approaches to demarcating a home range are the minimum convex polygon and kernel density estimation (Harris et al., 1990). The minimum convex polygon tends to overestimate home range size by including all the unused areas between outermost locations and increasing in area with large sample sizes (Borger et al., 2006a; Katajisto & Moilanen, 2006). As such, kernel density estimation is often preferred when demarcating a home range (Seaman & Powell, 1996; Marzluff et al., 2004; Borger et al., 2006a; Laver & Kelly, 2008). Although used to delineate binary home ranges, kernel density estimation generates a surface of values within the home range, which is useful for characterizing spatial variability in wildlife intensity. Kernel density surfaces are often referred to as utilization distributions as they give values that indicate higher and lower utilization of locations by individuals.
- Research Article
- 10.1002/ecy.4356
- Nov 1, 2025
- Ecology
- Research Article
- 10.1002/ecy.70236
- Nov 1, 2025
- Ecology
- Journal Issue
- 10.1002/ecy.v106.11
- Nov 1, 2025
- Ecology
- Research Article
- 10.1002/ecy.70239
- Nov 1, 2025
- Ecology
- Research Article
- 10.1002/ecy.70228
- Nov 1, 2025
- Ecology
- Research Article
- 10.1002/ecy.70245
- Nov 1, 2025
- Ecology
- Research Article
- 10.1002/ecy.4355
- Nov 1, 2025
- Ecology
- Research Article
- 10.1002/ecy.4354
- Oct 1, 2025
- Ecology
- Research Article
- 10.1002/ecy.70229
- Oct 1, 2025
- Ecology
- Research Article
- 10.1002/ecy.70235
- Oct 1, 2025
- Ecology
- Ask R Discovery
- Chat PDF
AI summaries and top papers from 250M+ research sources.