Abstract

Biological soil crusts (biocrusts) occur within drylands throughout the world, covering ~12% of the global terrestrial soil surface. Their occurrence in the deserts of the Arabian Peninsula has rarely been reported and their spatial distribution, diversity, and microbial composition remained largely unexplored. We investigated biocrusts at six different locations in the coastal and central deserts of Oman. The biocrust types were characterized, and the bacterial and fungal community compositions of biocrusts and uncrusted soils were analysed by amplicon sequencing. The results were interpreted based on the environmental parameters of the different sites. Whereas at lowland sites, mainly cyanobacteria-dominated biocrusts were observed, both cyanobacteria- and lichen-dominated biocrusts occurred at mountain sites. The majority of bacterial sequences (32–83% of total sequences) belonged to Actinobacteria, Cyanobacteria, Alphaproteobacteria, and Bacteroidetes, whereas fungal sequences belonged to Ascomycota, Basidiomycota, and Chytridiomycota (>95%). With biocrust development, a notable increase in cyanobacterial and decrease in actinobacterial proportions was observed for cyanobacteria-dominated crusts. In coastal areas, where salinity is high, biocrusts were replaced by a unique marine mat-like microbial community, dominated by halotolerant taxa. Redundancy analysis revealed a significant contribution of soil texture, cover type, carbon content, and elevation to the variations in bacterial and fungal communities. Multivariate analysis placed microbial communities in significantly separated clusters based on their carbon content, elevation and electrical conductivity. We conclude that Oman hosts a variety of cyanobacteria- and lichen-dominated crusts with their bacterial and fungal communities being largely dictated by soil properties and environmental parameters.

Highlights

  • Biological soil crusts, composed of cyanobacteria, algae, lichen and mosses, are distributed worldwide in diverse environments ranging from hot to cold deserts and are estimated to cover 30–40% of the total arid and semi-arid landscapes[1,2,3,4]

  • Most of the research related to distribution patterns of biocrusts was performed on samples originating from Australia, North America and Africa, while there is a clear gap in our knowledge on the biogeography of biocrust microorganisms on the Arabian Peninsula

  • Field observations showed that cyanobacteria-dominated crusts were encountered at all sampling sites, whereas lichen-dominated crusts were mainly restricted to the elevated sites (i.e. Haat and Jabal Al-Akhdar)

Read more

Summary

Introduction

Biological soil crusts (biocrusts), composed of cyanobacteria, algae, lichen and mosses, are distributed worldwide in diverse environments ranging from hot to cold deserts and are estimated to cover 30–40% of the total arid and semi-arid landscapes[1,2,3,4]. The distribution patterns and heterogeneity of biocrusts can differ depending on the spatial scale, and they are often dictated by several biotic (e.g. plant cover and human disturbance) and abiotic (e.g. climatic and edaphic) factors[5,6,7,8,9,10,11,12]. On the Arabian Peninsula, deserts are a prominent feature, covering more than half of the total area and characterized by limited plant cover Deserts in this region (e.g. Oman) vary from semiarid in the central desert to arid in the coastal regions, with clear differences in thermal regimes and precipitation rates. Such information provides the baseline knowledge that can be used to predict vegetation development and consequences of climate change (e.g. soil warming and altered precipitation) in the future. The sampling sites included the coastal and the central desert, covered an altitudinal gradient, and were chosen because of the clear variability in climatic and edaphic properties

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.