Abstract

1. Single-unit impulse activity evoked by transient, focal application of hydrogen peroxide (H2O2) to identified visceral receptive fields has been characterized in an in vitro rat splanchnic nerve-mesentery preparation. In addition to H2O2 responsiveness, units were characterized in terms of sensitivity to mechanical stimuli, warming, and bradykinin. 2. Mesenteric receptive fields of single splanchnic afferent C fibers in vitro were located with the use of warm (approximately 45 degrees C saline) or mechanical search stimuli. After delimitation of the warm-sensitive and/or mechanosensitive receptive field, units were tested for responsiveness to transient, focal application of H2O2. Microliter volumes (usually 1 microliter) of H2O2 (88-880 mM) evoked responses in 25 of 42 (60%) units with identified warm-sensitive and/or mechanosensitive receptive fields, and in an additional 10 units for which H2O2 was the only effective stimulus. 3. Tachyphylaxis to repeated H2O2 stimulation was observed with interstimulus intervals <30 min, but did not indicate irreversible inactivation of the terminal, because 1) during this period warm and mechanical stimuli elicited responses equal to or greater than those before H2O2 treatment, and 2) H2O2 sensitivity was restored after units were allowed to recover. 4. Eight units unresponsive to an initial dose of H2O2 responded vigorously to a repeated application at the same site, suggesting a potentiating effect of prior H2O2 exposure. 5. Sixty-two percent (8 of 13) of H2O2-responsive units, but no (0 of 6) H2O2-unresponsive units responded to transient, focal bradykinin (9-90 nM) application. 6. An indirect mode of H2O2-evoked afferent excitation in some units was suggested by several observations, including the prolonged (up to 8 min) duration of the response of some units to transient H2O2 application, and the occasionally long (>2 min) response latencies to focal application of H2O2 to defined receptive fields. 7. Excitation of splanchnic neurons by H2O2 may be relevant to the modulation of reactive oxygen species production by immunocompetent cells, because sensory neuropeptides contained in these afferent fibers are known to influence the respiratory burst of macrophages and neutrophils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.