Abstract

Thermo-chemical conversion of biomass is a promising technological alternative for producing renewable fuel and reducing waste disposal. This simulation study includes the first attempt to perform co-gasification of algae-plastic waste for H2-enriched gaseous fuel production. An Aspen Plus-based simulation model was developed to evaluate the influence of gasifier temperature and equivalence ratio on the syngas composition, heating value, and carbon conversion efficiency. Simulation results indicated that the rise in gasifier temperature favoured the H2 and CO formation, and further, plastic loading enhanced H2 production to a greater extent. It was observed that the product (H2 and CO) yield decreased significantly with the rise of the equivalence ratio. At the same time, CO2 formation increased due to more carbon conversion after enhancing O2 content in the gasifier. It was also noticed that the synergy of biomass and plastic waste significantly enhanced H2 content and improved heating value, leading to a produced energy-efficient gaseous product. It is inferred that H2-enriched feedstock acts as an H2 donor to the H2 deficient biomass. Based on the findings, consistency in the simulation results was observed compared with the previous literature. Hence, a mixture of biomass and plastic waste favours obtaining an energy-efficient renewable fuel that could be utilized for different applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.