Abstract

We consider a weakly dissipative hyperelastic-rod wave equation (or weakly dissipative Camassa–Holm equation) describing nonlinear dispersive dissipative waves in compressible hyperelastic rods. We fix a smooth solution and establish the existence of a strongly continuous semigroup of global weak solutions for any initial perturbation from \(H^{1}(\mathbb{R}).\) In particular, the supersonic solitary shock waves [8] are included in the analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.