Abstract

The problem of finding bounds on the H ∞-norm of systems with a finite number of point delays and distributed delay is considered. Sufficient conditions for the system to possess an H ∞-norm which is less or equal to a prescribed bound are obtained in terms of Riccati partial differential equations (RPDE’s). We show that the existence of a solution to the RPDE’s is equivalent to the existence of a stable manifold of the associated Hamiltonian system. For small delays the existence of the stable manifold is equivalent to the existence of a stable manifold of the ordinary differential equations that govern the flow on the slow manifold of the Hamiltonian system. This leads to an algebraic, finite-dimensional, criterion for systems with small delays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.