Abstract

ABSTRACT Assuming a vertical hydrostatic equilibrium in the baryonic discs, joint Poisson–Boltzmann equation was set up and solved numerically in a sample of 23 nearby dwarf galaxies from the LITTLE-THINGS survey. This is the largest sample to date for which detailed hydrostatic modelling is performed. The solutions of the Poisson–Boltzmann equation provide a complete three-dimensional distribution of the atomic hydrogen (H i) in these galaxies. Using these solutions, we estimate the vertical scale height (defined as the half width at half maxima of the density distribution) of the H i as a function of radius. We find that the scale height in our sample galaxies varies between a few hundred parsec at the centre to a few kiloparsec at the edge. These values are significantly higher than what is observed in spiral galaxies. We further estimate the axial ratios to investigate the thickness of the H i discs in dwarf galaxies. For our sample galaxies, we find a median axial ratio to be 0.40, which is much higher than the same observed in the Milky Way. This indicates that the vertical hydrostatic equilibrium results in thicker H i discs in dwarf galaxies naturally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.