Abstract

The activity of Na+/H(+)-exchange and H(+)-ATPase was measured in the absence of CO2/HCO3 by microfluorometry at the single cell level in rat proximal tubules (superficial S1/S2 segments) loaded with BCECF [2'7'-bis(carboxyethyl)5-6-carboxyfluorescein- acetoxymethylester]. Intracellular pH (pHi) was lowered by a NH4Cl-prepulse technique. In the absence of Na+ in the superfusion solutions, pHi recovered from the acid load by a mechanism inhibited by 0.1 microM bafilomycin A1, a specific inhibitor of a vacuolar-type H(+)-ATPase. Readdition of Na+ in the presence of bafilomycin A1 produced an immediate recovery of pHi by a mechanism sensitive to the addition of 10 microM EIPA (ethylisopropylamiloride), a specific inhibitor of Na+/H+ exchange. The transport rate of the H(+)-ATPase is about 40% of Na+/H(+)-exchange activity at a similar pHi (0.218 +/- 0.028 vs. 0.507 +/- 0.056 pH unit/min. Pre-exposure of the tubules to 30 mM fructose, 0.5 mM iodoacetate and 1 mM KCN (to deplete intracellular ATP) prevented a pHi recovery in Na(+)-free media; readdition of Na+ led to an immediate pHi recovery. Tubules pre-exposed to Cl(-)-free media for 2 hr also reduced the rate of Na(+)-independent pHi recovery. In free-flow electrophoretic separations of brush border membranes and basolateral membranes, a bafilomycin A1-sensitive ATPase activity was found to be associated with the brush border membrane fraction; half maximal inhibition is at 6 x 10(-10) M bafilomycin A1.(ABSTRACT TRUNCATED AT 250 WORDS)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.