Abstract

The mechanism of H 2O dissociation as well as the adsorption and oxidation reaction of H 2 on yttria-stabilized zirconia (YSZ), commonly used as part of solid oxide fuel cell (SOFC) anodes, was investigated employing temperature-programmed desorption (TPD) spectroscopy and density functional theory (DFT). In agreement with theory the experimental results show that interaction of gaseous H 2O with YSZ results in dissociative adsorption leading to strongly bound OH surface species. In the interaction of gaseous H 2 with an oxygen-enriched YSZ surface (YSZ + O) similar OH surface species are formed as reaction intermediates in the H 2 oxidation. Our experiments showed that in both the H 2O/YSZ and the H 2/YSZ + O heterogeneous reaction systems noticeable amounts of H 2O are “dissolved” in the bulk as interstitial hydrogen and hydroxyl species. The experimental H 2O desorption data is used to access the accuracy of the H 2/H 2O/YSZ adsorption/desorption and surface reaction kinetics data, employed in previous modeling studies of the electrochemical H 2 oxidation on Ni-pattern/YSZ model anodes by Vogler et al. [J. Electrochem. Soc., 156 (2009) B663] and Goodwin et al. [J. Electrochem. Soc., 156 (2009) B1004]. Finally a refined experimentally validated H 2/H 2O/YSZ adsorption/desorption and surface reaction kinetics data set is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.