Abstract
Ion temperature gradient (ITG) and trapped electron modes (TEM) driven turbulent transport in an ITER-like plasma is investigated by means of multi-species gyrokinetic Vlasov simulations with D, T, He, and real-mass kinetic electrons including their inter-species collisions. Beyond the conventional zero-dimensional power balance analysis presuming the global energy and particle confinement times, gyrokinetic-simulation-based evaluation of a steady burning condition with He-ash exhaust and D-T fuel inward pinch is demonstrated. It is clarified that a significant imbalance appears in the turbulent particle flux for the fuel ions of D and T, depending on the D-T density ratio and the He-ash accumulation. Then several profile regimes to satisfy Reiters steady burning condition are, for the first time, identified by the gyrokinetic simulation. Also, the impacts of zonal flows and nonthermal He-ash on the optimal profile regimes are examined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.