Abstract

Is the secondary component of GW190814 the lightest black hole or the heaviest neutron star ever discovered in a double compact-object system [R. Abbott et al., ApJ Lett., 896, L44 (2020)]? This is the central question animating this letter. Covariant density functional theory provides a unique framework to investigate both the properties of finite nuclei and neutron stars, while enforcing causality at all densities. By tuning existing energy density functionals we were able to: (a) account for a 2.6 Msun neutron star, (b) satisfy the original constraint on the tidal deformability of a 1.4 Msun neutron star, and (c) reproduce ground-state properties of finite nuclei. Yet, for the class of models explored in this work, we find that the stiffening of the equation of state required to support super-massive neutron stars is inconsistent with either constraints obtained from energetic heavy-ion collisions or from the low deformability of medium-mass stars. Thus, we speculate that the maximum neutron star mass can not be significantly higher than the existing observational limit and that the 2.6 Msun compact object is likely to be the lightest black hole ever discovered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.