Abstract

ABSTRACT GW Ori is a hierarchical triple star system with a misaligned circumtriple protoplanetary disc. Recent Atacama Large Millimeter/submillimeter Array observations have identified three dust rings with a prominent gap at $100\, \rm au$ and misalignments between each of the rings. A break in the gas disc may be driven by the torque from either the triple star system or a planet that is massive enough to carve a gap in the disc. Once the disc is broken, the rings nodally precess on different time-scales and become misaligned. We investigate the origins of the dust rings by means of N-body integrations and 3D hydrodynamic simulations. We find that for observationally motivated parameters of protoplanetary discs, the disc does not break due to the torque from the star system. We suggest that the presence of a massive planet (or planets) in the disc separates the inner and outer discs. We conclude that the disc breaking in GW Ori is likely caused by undetected planets – the first planet(s) in a circumtriple orbit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.