Abstract

In this paper, the guiding characteristics of sunflower-type fiber (SFF) with 6-fold rotational symmetry are investigated theoretically using finite element method (FEM). The behavior of single-mode propagation in SFF is verified. Numerical results reveal that, the cutoff ratio for endlessly single-mode propagation in SFF is 0.575 which is larger than that of photonic crystal fiber (PCF) and photonic quasi-crystal fiber (PQF). Moreover, SFF can present ultra-flattened near-zero chromatic dispersion, 0.249 ± 1.146 ps/nm/km, in a broadband of wavelength covering 1.20–1.84 μm over all the telecommunication wavelengths. In term of chromatic dispersion and confinement loss in the wavelength range from 1.00 to 2.00 μm, a comparison between SFF, PCF and PQF with same structure parameters is carried out. Importantly, the rotational symmetry, as a new manageable structure parameter beyond common air hole diameter and lattice constant, can be employed to manipulate the chromatic dispersion, confinement loss, effective mode area and non-linear coefficient and it dependences on these guiding characteristics are discussed in detail.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.