Abstract
Abstract Abstract Analysis and safety considerations of chemical and biological processes frequently require an outer approximation of the set of all feasible steady-states. Nonlinearities, uncertain parameters, and discrete variables complicate the calculation of guaranteed outer bounds. In this paper, the problem of outer-approximating the region of feasible steady-states, for processes described by uncertain nonlinear differential algebraic equations including discrete variables and discrete changes in the dynamics, is adressed. The calculation of the outer bounding sets is based on a relaxed version of the corresponding feasibility problem. It uses the Lagrange dual problem to obtain certificates for regions in state space not containing steady-states. These infeasibility certificates can be computed efficiently by solving a semidefinite program, rendering the calculation of the outer bounding set computationally feasible. The derived method guarantees globally valid outer bounds for the steady-states of nonlinear processes described by differential equations. It allows to consider discrete variables, as well as switching system dynamics. The method is exemplified by the analysis of a simple chemical reactor showing parametric uncertainties and large variability due to the appearance of bifurcations characterising the ignition and extinction of a reaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.