Abstract
To investigate the energy consumption involved in a sampled-data consensus process, the problem of guaranteed cost consensus for sampled-data linear multi-agent systems is considered. By using an input delay approach, an equivalent system is constructed to convert the guaranteed cost consensus problem to a guaranteed cost stabilization problem. A sufficient condition for guaranteed cost consensus is given in terms of linear matrix inequalities (LMIs), based on a refined time-dependent Lyapunov functional analysis. Reduced-order protocol design methodologies are proposed, with further discussions on determining sub-optimal protocol gain and enlarging allowable sampling interval bound made as a complement. Simulation results illustrate the effectiveness of the theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.