Abstract

This paper studies the problem of guaranteed cost anti-windup stabilization of discrete delayed cellular neural networks. Saturation degree function is initially presented and the convex hull theory is applied to handle the saturated terms of discrete delayed cellular neural networks. Accordingly, after choosing a common quadratic performance function, the paper designs a guaranteed cost stabilization controller in the absence of input saturation on the basis of Lyapunov–Krasovskii theorem and linear matrix inequality formulation. Then a static state feedback anti-windup compensation is derived, which guarantee a guaranteed cost and the estimation of the asymptotic stability region for the closed-loop system. Finally, numerical examples are presented to demonstrate the effectiveness of the proposed design technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.