Abstract

Biogenic sulfide production is a common problem in the oil industry, and can lead to costly hydrocarbon processing and corrosion of extraction infrastructure. The same phenomenon has recently been identified in shale gas extraction by hydraulic fracturing, and organic additives in fracturing fluid have been hypothesized to stimulate this process. Constraining the relative effects of the numerous organic additives on microbial metabolism in situ is, however, extremely challenging. Using a bespoke bioreactor system we sought to assess the potential for guar gum, the most commonly used gelling agent in fracturing fluids, to stimulate biogenic sulfide production by sulfate-reducing microorganisms at elevated pressure. Two pressurized bioreactors were fed with either sulfate-amended freshwater medium, or low-sulfate natural surface water, in addition to guar gum (0.05 w/v%) and an inoculum of sulfate-reducing bacteria for a period of 77 days. Sulfide production was observed in both bioreactors, even when the sulfate concentration was low. Analysis of 16S rRNA gene sequences indicate that heterotrophic bacteria closely associated with the genera Brevundimonas and Acinetobacter became enriched early in the bioreactor experiments, followed by an increase in relative abundance of 16S rRNA genes associated with sulfate-reducing bacteria (Desulfosporosinus and Desulfobacteraceae) at later time points. Results demonstrate that guar gum can stimulate acid- and sulfide-producing microorganisms at elevated pressure, and may have implications for the potential role in microbially induced corrosion during hydraulic fracturing operations. Key differences between experimental and in situ conditions are discussed, as well as additional sources of carbon and energy for biogenic sulfide production during shale gas extraction. Our laboratory approach can be tailored to better simulate deep subsurface conditions in order to probe the role of other fracturing fluid additives and downhole parameters on microbial metabolisms observed in these systems. Such baseline studies will prove essential for effective future development of shale gas worldwide.

Highlights

  • The recent development of shale gas in the United States has dramatically increased domestic gas supply, and the UK and other European countries are planning to follow suit in the coming decades and exploit their own shale gas reserves (Andrews, 2013; Weijermars, 2013)

  • Davis et al (2012) monitored the change in microbial communities in post-fracturing fluids stored in tanks in the Barnett shale formation over a 6-month period using 16S rRNA gene sequencing, and found the number of sequences affiliated with Desulfovibrio increased over time

  • It is common that microorganisms other than those traditionally thought of as sulfate-reducing bacteria are the dominant sulfide-producers in conventional hydrocarbon reservoirs, especially at elevated temperature and pressure (Gittel et al, 2009; Stevenson et al, 2011) Desulfovibrio was found to be abundant in flowback fluids from one well in the Antrim shale gas play (Kirk et al, 2012), consistent with results reported by Davis et al (2012)

Read more

Summary

Introduction

The recent development of shale gas in the United States has dramatically increased domestic gas supply, and the UK and other European countries are planning to follow suit in the coming decades and exploit their own shale gas reserves (Andrews, 2013; Weijermars, 2013). The lead up to this development offers the opportunity to learn from and avoid problems encountered in the US, among them the biogenic production of hydrogen sulfide This process, known as souring, causes pitting and cracking of susceptible materials (increasing the risk of leaks), can form pyrophoric films on steel in gas lines (posing a fire risk), and necessitates costly removal from produced gas. These issues can potentially lead to environmental and reputational damage, and can shorten the life span of a shale gas well (Eden et al, 1993).

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.