Abstract

Glycogen synthase kinase (GSK)-3β interaction protein (GSKIP), a key regulator of signaling transduction, is implicated in multiple pathological processes. However, whether GSKIP is involved in myocardial infarction is unknown. The present study was designed to determine the potential involvement of GSKIP in myocardial hypoxia/reoxygenation (H/R) injury, as an in vitro model for the study of myocardial infarction. Our data showed that H/R treatment triggered a marked decrease in GSKIP expression in cardiomyocytes. The upregulation of GSKIP significantly rescued the decreased viability of H/R-exposed cardiomyocytes and attenuated H/R-induced apoptosis and reactive oxygen species (ROS) generation. On the contrary, the depletion of GSKIP enhanced the sensitivity of cardiomyocytes to H/R-induced injury. Further data exhibited that GSKIP overexpression upregulated the nuclear expression of nuclear factor-erythroid-derived 2-related factor 2 (Nrf2) and increased Nrf2/antioxidant response element (ARE)-mediated transcription activity associated with upregulation of GSK-3β phosphorylation. Interestingly, inhibition of GSK-3β by a chemical inhibitor markedly enhanced Nrf2/ARE activation and abrogated GSKIP depletion-exacerbated sensitivity to H/R-induced injury. In addition, Nrf2 inhibition markedly reversed GSKIP overexpression-induced cardioprotective effect against H/R injury. Overall, these results demonstrate that overexpression of GSKIP alleviates H/R-induced apoptosis and oxidative stress in cardiomyocytes by enhancing Nrf2/ARE antioxidant signaling via GSK-3β inhibition. Our study indicates a potential role of GSKIP in myocardial infarction and GSKIP may serve as a promising molecular target for cardioprotection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.