Abstract
Growth-associated protein-43, an established marker of neuronal plasticity during development and in injury, was used to characterize innervation in the normal human pancreas and changes in chronic alcohol-induced pancreatitis by using light microscopic immunocytochemistry and computer-assisted image analysis. Immunostaining for the pan-neuronal marker protein gene-product 9.5 served as a reference for the characterization of total innervation in both groups. In normal human pancreas, strong protein gene-product 9.5 immunostaining revealed all nerve fibres in nerve trunks, all neuronal cell bodies and the entire parenchymal innervation. In contrast, growth-associated protein-43 immunoreaetivity was restricted to a few nerve fibres in interlobular nerve trunks and to fine varicose nerve fibres supplying the parenchyma, blood vessels, pancreatic ducts and intrinsic ganglia. In cell bodies of intrinsic neurons, growth-associated protein-43 immunoreaetivity was absent or extremely faint. In chronic pancreatitis, the protein gene-product 9.5 innervation exhibited region-specific changes. In areas with reduced parenchyma, the protein gene-product 9.5 innervation was sparse. In fibrotic regions, which are characteristic for advanced stages of chronic pancreatitis, enlarged nerve trunks showing neuroma-like formations were heavily stained for protein gene-product 9.5. In fibrotic tissue, protein gene-product 9.5-containing nerve fibres were extremely rare. The growth-associated protein-43 innervation in chronic pancreatitis was characterized by a dramatic increase, which was most pronounced in the enlarged nerve trunks. Such nerve trunks were frequently surrounded by infiltrates of immune cells, which in some cases formed follicle-like structures. Digital image analysis of adjacent sections and double fluorescence immunocytochemistry revealed that growth-associated protein-43 immunoreaetivity was present in the vast majority of protein gene-product 9.5-immunoreactive nerve fibres. In contrast to the normal pancreas, a major subpopulation of intrinsic neurons immunostained for growth-associated protein-43. The expression of growth-associated protein-43 in the terminal fields of pancreatic nerves suggests that the innervation of the normal human pancreas undergoes continual and toposelective remodelling. The increase in the density of growth-associated protein-43 immunoreactive nerve fibres in enlarged nerve trunks paralleled by augmented expression of growth-associated protein-43 in intrinsic neurons and reduced parenchymal growth-associated protein-43-immunoreactive innervation underline the dramatic plasticity of pancreatic innervation in chronic pancreatitis. Close spatial relationships of growth-associated protein-43-containing enlarged nerve bundles and fibres branching thereof with immune cells may suggest involvement of growth-associated protein-43 in local neuroimmune mechanisms, which may be related to the perpetuation of inflammatory pain and to the changes in exocrine and endocrine functions in chronic pancreatitis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.