Abstract

Yttria-stabilized zirconia (YSZ) thin films were formed at 1000°C by a modified electrochemical vapour-deposition (EVD) using NiO as an oxygen source, and ZrCl 4 and YCl 3 as metal sources. Growth rate kinetics were examined using NiO pellet substrates with different pore structures. The thickness of YSZ film increased linearly with deposition time, and the growth rate increased with increasing the porosity of the substrate. The pore size as well as the porosity affected the growth rate. In addition, the observed growth rate was much slower than the theoretical one assuming that the electrochemical transportation of the charged species across the growing film is rate limiting. From these results, it was concluded that the rate-determining step is not the bulk electrochemical transport, but the mass transport of dissociated oxygen in the substrate pore.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.