Abstract

Salt stress affects crop growth and productivity. In this study, we determined the growth, yield of photosystem II (PSII), and K+ and Na+ concentration in root, stem, old leaves, and young leaves of two Mexican varieties of rice, Tres Ríos and Cotaxtla. In addition, the K+/Na+ ratio in stem and root of both varieties was determined. The experiment was conducted in a growth chamber under controlled conditions, under a completely randomized distribution, with a 2 x 2 (Variety x Salinity) factorial arrangement and 12 replications. Plants were grown in a hydroponic solution for 15 days and then some of them were treated with 100 mM NaCl; control plants (without NaCI treatment) were grown in parallel. Salt stress caused 20 and 15% reductions in stem and root length, respectively, in the variety Tres Ríos, while in the variety Cotaxtla no significant differences were observed in these variables compared to the control. Dry matter weight decreased by 24% in the variety Tres Ríos. The quantum yield of PSII decreased by 30% the third day of treatment application, in both varieties. Na+ concentration was significantly (p ≤ 0.05) higher in NaCI-treated plants. In the variety Tres Ríos, the yield of PSII was completely eradicated six days after treatment implementation, while the K+ concentration in stem and older leaves also decreased and the lowest K+/ Na+ ratio in stem was recorded, which could indicate that it is more susceptible to salinity than the variety Cotaxtla.

Highlights

  • Salinity is a major problem in irrigated and rainfed agriculture

  • The irrigated farming system provides about a third of the world's food (MUNNS, 2002) and it is estimated that about 20% of the irrigated area (45 million ha) is affected by salinity (FAO, 2008)

  • It is estimated that 2% of the rain-fed agriculture area (32 million ha) is affected by salinity (FAO, 2008)

Read more

Summary

Introduction

Salinity is a major problem in irrigated and rainfed agriculture. The irrigated farming system provides about a third of the world's food (MUNNS, 2002) and it is estimated that about 20% of the irrigated area (45 million ha) is affected by salinity (FAO, 2008). Agronomy rain-fed agriculture, especially in coastal areas as salt water enters them during high tide (WALIA et al, 2005). It is estimated that 2% of the rain-fed agriculture area (32 million ha) is affected by salinity (FAO, 2008). The salinity problem has been addressed through improvements in production practices and the introduction of tolerant varieties

Objectives
Methods
Results
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.