Abstract

Ammonia molecular-beam epitaxy has been used to grow high-quality epilayers of GaN and AlGaN/GaN heterostructure field-effect transistor (HFET) structures on insulating 4H-SiC. The growth process, which used a magnetron sputter epitaxy deposited buffer layer of AlN, has been described previously. Ex situ pretreatment of the SiC substrate was found to be unnecessary. For a single 2.0 μm thick silicon doped epilayer, a room temperature (RT) electron mobility of 500 cm2/Vs was measured at a carrier density of 6.6×1016 cm−3. For the HFET structure, a room temperature mobility of 1300 cm2/Vs at a sheet carrier density of 3.3×1012 cm−2 was observed, increasing to 11 000 cm2/Vs at 77 K. The surface morphology of the layers indicated a coalesced mesa structure similar to what we observed for growth on sapphire, but with a lower overall defect density and correspondingly larger grain size. The observation of well-resolved Shubnikov de Haas oscillations at fields as low as 3 T indicated a relatively smooth interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.