Abstract

We report the growth of bulk β-Ga2O3 crystals based on crystal pulling from a melt using a cold container without employing a precious-metal crucible. Our approach, named oxide crystal growth from cold crucible (OCCC), is a fusion between the skull-melting and Czochralski methods. The absence of an expensive precious-metal crucible makes this a cost-effective crystal growth method, which is a critical factor in the semiconductor industry. An original construction 0.4–0.5 MHz SiC MOSFET transistor generator with power up to 35 kW was used to successfully grow bulk β-Ga2O3 crystals with diameters up to 46 mm. Also, an original diameter control system by generator frequency change was applied. In this preliminary study, the full width at half maximum of the X-ray rocking curve from the obtained β-Ga2O3 crystals with diameters ≤ 46 mm was comparable to those of β-Ga2O3 produced by edge-defined film fed growth. Moreover, as expected, the purity of the obtained crystals was high because only raw material-derived impurities were detected, and contamination from the process, such as insulation and noble metals, was below the detection limit. Our results indicate that the OCCC technique can be used to produce high-purity bulk β-Ga2O3 single crystalline substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.