Abstract
The fabrication of ZnO (80 nm) thin film was achieved by hybrid atomic layer deposition (ALD) to prevent the reaction between the reactants and conductive layer of the substrates. ZnO nanorods (ZnO-NRs) growth over the substrates was performed by wet chemical procedure in which Zn(NO3)2 and hexamethylenetetramine were used as the precursors. HR-TEM, SAED, FE-SEM, X-ray diffraction (XRD), and UV–Vis spectroscopy were employed to characterize the ZnO-NRs samples on the substrates. XRD and HR-TEM analyses confirmed that the ZnO nanorod structure is hexagonal wurtzite type with growth in the [0001] direction. Length and thickness of the ZnO-NRs ranged between 45 and 90 nm and 480 and 600 nm, respectively. It was observed that the growth rate of NRs in [0001] direction is 10 times higher than in [1000] direction. The growth mechanism and resulted dimensions of nanorods are function of the synthesis parameters (in hybrid ALD process) such as reaction time, temperature, precursor molar ratio, and thickness of ZnO film.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.