Abstract

The high-speed impact of a projectile on a liquid-filled tank causes the hydraulic ram, in which a cavity is formed. To study the growth characteristics of the cavity, the formation mechanism of the cavity is analyzed. The effect of Reynolds number and Mach number on drag coefficient is considered, the axial and radial growth models of the cavity are established respectively. The relative errors between the cavity length calculated by the axial growth model, the cavity diameter calculated by the radial growth model and Ma L. Y. test results are less than 20%, which verifies the effectiveness of the axial and radial growth models. Finally, numerical simulation is carried out to study the growth characteristics of the cavity caused by the projectile impacting the satellite tank at the velocity of 4000 m/s. The cavity length and diameter calculated by the axial and radial growth models agree well with those obtained by simulation results, indicating that the cavity length and diameter in satellite tank can be accurately calculated by the axial and radial growth models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.