Abstract

Nanorods of Na0.44MnO2 are a promising cathode material for Na-ion batteries due to their large surface area and single crystalline structure. We report the growth mechanism of Na0.44MnO2 nanorods via solid state synthesis and their physical properties. The structure and the morphology of the Na0.44MnO2 nanorods are investigated by X-ray diffraction (XRD), scanning and tunneling electron microscopy (SEM and TEM), and energy-dispersive X-ray (EDX) techniques. The growth mechanism of the rods is investigated and the effects of vapor pressure and partial melting of Na-rich regions are discussed. The magnetic measurements show an antiferromagnetic phase transition at 25K and the μeff is determined as 3.41 and 3.24μB from the χ–T curve and theoretical calculation, respectively. The electronic configuration and spin state of Mn3+ and Mn4+ are discussed in detail. The electrochemical properties of the cell fabricated using the nanorods are investigated and the peaks in the voltammogram are attributed to the diffusion of Na ions from different sites. Na intercalation process is explained by one and two Margules and van Laar models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.