Abstract

The parabolic rate constant for the thickening of grain boundary ferrite allotriomorphs at the faces of austenite grain boundaries was measured as a function of isothermal transformation temperature in three Fe-C-X1-X2 alloys where X1 is Mn and X2 is successively Si, Ni, and Co. The results were compared with the predictions of the local equilibrium model for multi-component systems and with those derived from the theory of growth under paraequilibrium conditions. The distribution of Mn and Si in ferrite and austenite in the Fe-C-Mn-Si alloy was also measured as a function of reaction temperature with transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX). The observed temperature below which alloying element partition ceased was in good agreement with the local equilibrium model. Whereas the parabolic rate constant for thickening was considerably larger than the amount predicted by this theory in the alloying element diffusion-controlled regime, the opposite was true in the carbon diffusion-controlled regime. Similarly, the calculated paraequilibrium constant was usually considerably larger than that measured experimentally. Synergistic enhancements of the effects of Mn and X2 in diminishing thickening kinetics were observed for each X2. The time-temperature-transformation (TTT) curves for the beginning of transformation were calculated from a modified Cahn analysis for the overall kinetics of grain-boundary-nucleated reactions using values of the nucleation rate and the parabolic growth rate constant computed from various models and compared with experimentally determined TTT curves. Substantial discrepancies between the calculated and measured curves were ascribed to synergistic effects of Mn and X2 upon nucleation and growth kinetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.