Abstract

Particles interacting by a combination of isotropic short-range attraction and long-range repulsion have been shown to form complex phases despite the apparent simplicity of the interparticle potential. Using computer simulations we study the behavior of two-dimensional systems of colloids with such an interaction, focusing on how area fraction and repulsion range at fixed repulsion gradient may be used to tune the resulting kinetics and nonequilibrium structure. While the short-range attraction leads to aggregation, the long-range repulsion encourages growth of chains of particles due to repulsive intercluster interactions. Depending on area fraction/repulsion range we observe chain labyrinths, chain-compact aggregate coexistence, and connected networks of chains. The kinetics of cluster growth displays a sequence of connected networks and disconnected cluster or chain systems with increasing repulsion range, indicating the competing roles of connectivity of growing chains and repulsion-driven breakup of chains into compact aggregates. Chain-dominated systems show approximately logarithmic coarsening at late time that we interpret as the result of chains performing random walks in the randomly fluctuating potential landscape created by their neighbors, a situation reminiscent of glassy systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.