Abstract

The transcription factor E2F regulates the expression of several genes concerned with cell growth. The ability to inhibit transcription by blocking E2F expression has great potential in the treatment of proliferative disorders. The effect of double-stranded phosphorothioate oligonucleotides containing E2F transcription factorciselement, a so called ‘decoy’ has examined on the growth of cultured human Tenon's fibroblastic cells. Human Tenon's fibroblastic cells were cultured and challenged by E2F decoy coated with the Hemagglutinating virus of Japan (HVJ) cationic liposomes (HVJ-CL). The outcome was evaluated using fluorescence microscopy, RT-PCR and growth assays. HVJ-CL facilitated the transfer of external oligonucleotides to cultured human Tenon's fibroblastic cells. The E2F decoy, transferred by HVJ-CL, inhibited simultaneously the expression of the mRNAs of several cell cycle related genes such as c-myc, cdc2, proliferative cell nuclear antigen, and dehydrofolate reductase. Entry into S phase was also reduced to 42.7% of the positive control by the E2F decoy. The total increase of DNA at four days was reduced to 59.7% of the positive control by 5 μMand 29.9% by 15 μMof E2F decoy. It is concluded that gene therapy using the E2F transcription factor offers a potential therapeutic modality for the treatment of proliferative disorders such as proliferative vitreoretinopathy and fibrosis following filtering surgery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.