Abstract

The CDK inhibitor, p21WAF1/Cip1 blocks cell cycle progression. In vitro, the N-terminus of p21 binds and inhibits CDK-cyclin kinase activity, whereas the C-terminus binds and inhibits PCNA (proliferating cell nuclear antigen) function. PCNA is essential for processivity of both DNA polymerase delta and epsilon. We have performed a detailed analysis of growth inhibition by the N- and C-terminal regions of p21, and determined whether the N- and C-terminal regions mediate this effect by different mechanisms. Expression of either the N- or the C-terminal region of p21 inhibits DNA synthesis and cell growth, but not as efficiently as full length p21. The effectiveness of the two p21 domains is dependent on their stability which is determined by the ubiquitin-proteasome pathway. The stabilization of the N- and C-terminal region of p21 increases their effectiveness as inhibitors of DNA synthesis to levels comparable to full length p21. Inhibition of DNA synthesis by the N-terminal region of p21 involves suppression of E2F activity. In contrast, inhibition by the C-terminal region of p21 is not accompanied by suppression of E2F activity, but is mediated via PCNA binding. The C-terminal region of p21 therefore inhibits cell growth by a mechanism distinct from that of the N-terminal region containing the CDK-cyclin inhibitory domain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.