Abstract

The murine X-linked Hyp mutation is characterized by decreased renal expression of type II Na+-phosphate (Pi) cotransporter (Npt2) mRNA and an abnormal vitamin D response to Pi deprivation. The latter is manifest by an aberrant fall in serum 1,25-dihydroxyvitamin D3 (1,25(OH)2D) levels that is associated with an increase in renal 1,25(OH)2D-24-hydroxylase (24-hydroxylase), the first enzyme in the C-24 oxidation pathway. Because growth hormone (GH) enhances renal Na+-Pi cotransport and permits the adaptive 1,25(OH)2D response in Pi-deprived hypophysectomized rats, we examined the effects of GH on vitamin D metabolism and renal Npt2 mRNA abundance in Hyp mice fed control and low Pi diets. GH significantly decreased renal 24-hydroxylase activity (0.202+/-0.020 to 0.098+/-0.008 pmol/mg of protein/minute, p < 0.05) and mRNA abundance, relative to beta-actin mRNA (299+/-13 to 78+/-14, p < 0.05), in Hyp mice fed the low Pi diet but had no effect on either parameter in mutants fed the control diet. Moreover, after GH treatment, renal 24-hydroxylase gene expression was no longer elevated in Pi-deprived Hyp mice relative to mutants fed control diet. In contrast, GH did not correct the serum concentration of 1,25(OH)2D in Pi-deprived Hyp mice. We also demonstrate that GH did not normalize renal Npt2 mRNA expression, relative to beta-actin mRNA, in Hyp mice fed either control or low Pi diets. The present data demonstrate that normalization of renal 24-hydroxylase gene expression in Pi-deprived Hyp mice by GH is not sufficient to correct the serum concentration of 1,25(OH)2D and is not associated with an alteration in renal Npt2 mRNA expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.